LLMの知識を狙い撃ちして変更・修正する「知識編集(Knowledge Editing)」

2024.01.11
深堀り解説
深堀り解説

本記事では、LLMの知識を狙い撃ちして編集する手法(Knowledge Editing:知識編集)について整理します。

知識編集はモデル全体を再学習させることない効率的なアプローチと言われており、信頼性の向上や、パーソナライズされたエージェントの開発に役立つとのことです。なお、有名な手法としてはLoRAなどが含まれます。

背景、知識編集の概要、3つのフェーズ、評価方法、今回行われた実験と結果、そして応用例について紹介します。

本記事の関連研究

背景

LLMは、さまざまな知識をパラメータ内に蓄えています。下の図は、LLMにおける知識の保存方法を図式化したものです。モデルが情報を処理し、さまざまなレベルで言語の特徴をエンコードする様子を示しています。

LLMには、時として誤りや古い情報を出力するといった問題があります。この問題に対処する最も一般的な方法は、RAG(外部データの参照)やファインチューニングです。

参考:LLMのRAG(外部知識検索による強化)をまとめた調査報告

しかし、RAGやファインチューニングにも課題があります。まず、外部のデータベースにいちいちアクセスするのも、場合によっては効率的とは言えません。また、ファインチューニングにはコストと時間がかかる上に、新しい知識を学ぶと古い知識を忘却するという問題も存在します。

そのためパラメータ効率の良いチューニング技術が必要とされています。

そこで「知識編集」という戦略に注目が集まっています。LLMの知識を直接編集し、より効率的に最適化する方法です。

以下で詳しく見ていきましょう。

PREMIUM

プレミアム会員限定の記事です

記事の購読には、アカウント作成後の決済が必要です。

  • ・全記事・論文コンテンツを無制限で閲覧可能
  • ・平日毎日更新、専門家による最新リサーチを配信

関連記事