「DALL-E 3はどうしてユーザーの意図を正確に汲み取ることができるのか?」に対するOpenAIの論文が発表されました。

2023.10.20
注目論文まとめ
注目論文まとめ

結論としては、GPT-4で訓練したハイレベルな画像キャプショナーが「人間が自然に使用する言葉」で説明文を理解できるのがポイントとのことです。

@ James Betker et al., “Improving Image Generation with Better Captions”

従来の画像生成AIは、テキストに含まれるユーザーの指示を読み取るのが難しいのが大きな課題でした。
画像生成AIに上手く意図を伝えるためのプロンプト技術がユーザー間でシェアされてきましたが、複雑な体系になっていました。

そこでOpenAIなどの研究者らは、高度な画像キャプションに特化した訓練データでモデルの学習を行い、プロンプトに従う能力を向上させました。その結果生まれたのがDALL-E 3です。

※本稿は論文の簡単な紹介記事です。

DALL-E 3のフレームワーク

フレームワークは以下のとおりです。

PREMIUM

プレミアム会員限定の記事です

記事の購読には、アカウント作成後の決済が必要です。

  • ・全記事・論文コンテンツを無制限で閲覧可能
  • ・平日毎日更新、専門家による最新リサーチを配信

関連記事