DeepMindの研究者らが有効性を検証した、LLMに自ら高品質な訓練データを生成させる「自己学習」
DeepMindの研究チームは、現在の大規模言語モデル(LLM)は人間によって生成されたデータに過度に依存しており、LLMの発展にとって望ましい状況ではないと考えました。 この問題に対処するために、彼らはLLMが自律的に高品質な訓練データを生成し、データセットを自ら拡充する「自己学習」アプローチの有効性を検証しました。 実施された実験では、自己生成データによって、数学やコード生成の分野におけるLLMの能力が顕著に向上したことが確認されました。 本記事では、研究内容を詳しく見ていきます。 参照論文情報 タイトル:Beyond Human Data: Scaling Self-Training f…
埋め込むにはこの URL をコピーして WordPress サイトに貼り付けてください
埋め込むにはこのコードをコピーしてサイトに貼り付けてください