「視覚は本来、言語に依存しない」と考えた研究者らが、言語データなしで大規模ビジョンモデル(LVM)を構築するアプローチを開発

UC BerkeleyとJohns Hopkins Universityの研究者らは、「視覚は本来、言語に依存しない」と考え、言語データを使用せずに大規模ビジョンモデル(LVM)を効果的に学習する新しいアプローチを開発しました。 研究者らは、開発したアプローチが大規模なデータセットに対して優れたスケーラビリティを持ち、さまざまなビジョンタスクに適用可能であることを示しました。 本記事では、そのアプローチ、機能、実験結果などの詳細を紹介します。 参照論文情報 タイトル:Sequential Modeling Enables Scalable Learning for Large Vision M…